澳门新葡京娱乐城

学术报告
您现在的位置: 澳门新葡京娱乐城 > 科学研究 > 学术报告 > 正文

20221215 王跃循 Well-posedness of classical solutions to the vacuum free boundary problem of the viscous Saint-Venant system for shallow waters

发布时间:2022-12-12 18:20    浏览次数:    来源:

报告题目Well-posedness of classical solutions to the vacuum free boundary problem of the viscous Saint-Venant system for shallow waters

报告人王跃循教授兰州大学数学与统计学院

邀请人;熊林杰

时间1215周四15:00-1600北京时间

腾讯会议228 395 775无密码

摘要We establish the local-in-time well-posedness of classical solutions to the vacuum free boundary problem of the viscous Saint-Venant system for shallow waters derived rigorously from incompressible Navier-Stokes system with a moving free surface by Gerbeau and Perthame. Our solutions are smooth to the moving boundary, although the initial height degenerates as a singularity of the distance function to the vacuum boundary.

报告人简介王跃循,兰州大学数学与统计学院教授,博士生导师,国家特聘青年专家。主要从事流体力学偏微分方程与色散偏微分方程的研究,相关结果发表在ARMACPDESIMAJDE等国际数学期刊。


澳门新葡京娱乐城-澳门新葡京娱乐场版权所有©2017年     通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:[email protected]
域名备案信息:[www.xpjcasino.com,www.hnu.cn/湘ICP备05000239号]      [hnu.cn 湘教QS3-200503-000481 xpjcasino.com  湘教QS4-201312-010059]